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Microwave Imaging— CompJex Permittivity
Reconstruction by Simulated Annealing

Line Garnero, Ann Franchois, Jean-Paul Hugonin, Christian Pichot, and Nadine Joachimowicz

Abstract—This paper refers to quantitative reconstruction of
the dielectric properties of a strongly inhomogeneous object by
means of active microwave imaging. An iterative reconstruction
algorithm based on simulated annealing is presented, In some
cases, this method seems to be more etilcient than iterative
deterministic methods and we show that it can converge to an
accurate solution when other methods diverge.

I. INTRODUCTION

THE penetration of microwaves in various materials
gives active microwave imaging a large potential for

applications in domains such as non-destructive testing,
civil engineering and medical imaging [1]–[3]. This fairly
recent imaging technique is aimed at obtaining some
information about the inside of an object exposed to low
power incident microwave radiation from external scat-
tered field measurements. It is known that the scattered
microwave field is sensitive to the complex permittivity
distribution of an object. The complex permittivity is of
particular interest in the case of medical imaging, for it
depends on the morphology, the blood flow and the
temperature of a tissue, hence active microwave imaging
is complementary to existing imaging techniques (X-ray
tomography, nuclear magnetic resonance, ultrasound,
impedance tomography,.,. ). Diffraction effects cannot
a priori be neglected since the scatterer’s dimensions are
comparable to the wavelength. The complex permittivity
is then related in a nonlinear way to the scattered field,
complicating the resolution of the inverse problem.

During the last decade much attention has been paid to
the development of reconstruction algorithms. Methods
based on diffraction tomography [4]-[7] provide a recon-
struction of the polarization current density from which
the complex permittivity can be derived in the framework
of the Born approximation. They are fast and relatively
noise insensitive but their applications are restrained to
qualitative or quantitative imaging of weak quasi-homoge-
neous scatterers and to differential imaging [8]. These
limitations have stimulated us to develop iterative meth-
ods, which enable injection of a priori information, for
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quantitative reconstruction of highly contrasted objects of
practical interest in the medical domain.

We present here a method based on simulated anneal-
ing, a stochastic approach which was first used in opti-
mization problems with a large number of variables [9]
and then in image reconstruction in nuclear medicine
[10]. Theoretically it converges to the global minimum of
a cost function while deterministic methods often become
trapped in local minima. In Section II we give the theoret-
ical background of the method. First, we treat the forward
scattering problem, that is solved in each iteration, tlnd
we show that it can be simplified in the case of simulated
annealing. The general principles of simulated annealing
and the way we applied it to microwave imaging are
described. In Section HI we present some results ob-
tained with simulated data and compare them to results
from a Newton-Kantorovich type deterministic method
we recentlly developed [11]. Results demonstrating a se-
quential use of the two methods also are presented. In
Section IV we give some concluding remarks.

II. THEORY ANDFORMULATION

We appliedl the proposed reconstruction algorithm to
the limited case of cylindrical objects of arbitrary crolss-

sectional shape under multi-incidence TM excitation. Fig.
1 illustrates the imaging geometry and notation. The
section S of a cylindrical object which may be strongly
inhomogeneous is characterized by its complex permittiv-
ity c*(r):

e*(r) =~0.5, (r)+ ia(r)\f3, (1)

with e,(r) the relative permittivity and a(r) the conduc-
tivity at a point r(x, y). It is surrounded by a medium of
complex permittivity e~,f. Note that the dielectric proper-
ties do not vary along the cylinder’s axis Oz. An incident
plane wave of angular frequency o with electric field E’
polarized parallel to Oz illuminates the object. The scat-
tered field is measured by detectors situated on a line L
perpendicular to the propagation direction of the incident
wave. This is repeated for different angles 13of the line
and of the incident field. The inverse problem then con-
sists of estimating the complex permittivity distribution
E*(r) of the section from these multi-incidence measu~re-
ments. As a forward problem is solved for each iteration
of the simulated annealing reconstruction algorithm—i.e.,

0018-9480/91$01.00 @1991 IEEE



1802 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 11, NOVEMBER 1991

Fig. 1. Geomet~for microwave tomography.
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provisional estimate n+l

calculating the scattered field for a given distribution
E*(r) and incident field—we will first treat this aspect
with more detail.

A. Forward Problem

Let the total electric field at a point r, E(r), be the
sum of the incident field Ei(r)—i.e., the field if there
were no object—and the scattered field -ES(r). These
fields are polarized parallel to Oz since the characteristics
of the object do not vary along the cylinder’s axis, result-
ing in a reduction of the wave equation to the scalar
helmholtz equation for a homogeneous medium with in-
duced sources on the right hand side:

AE+k:xtE =(k:xt–k2(r))E, (2)

where k 2(r) = ti2pO~*(r). The exact solution of (2) is
represented by the integral equation:

E(r) =Ei(r)+ /f(k&k2( r’))E(r’)G(r; r’)dr’,
s

(3)

where G is the free-space Green’s function for a homoge-
neous medium:

G(r; r’) = –(i. /4) H$)(kextlr– Y’I), (4)

‘1)the Hankel function of the first kind for a e ‘i@twith Ho
time dependence.

We used the moment method [13] with pulse basis
functions to calculate the total electric field in the section
S, discretized into N rectangular cells in this case. The
cell size is chosen to be small enough so that the field and
complex permittivity can be considered constant in each
cell. A system of linear equations of order N is obtained:

‘1’1
Ei(rl)

. (5)

Ei(rN)

The inversion of this system is carried out by a direct

$
random number YES

generator
o<r<l \ r

estimate No
not

accepted n = n+l

Fig. 2. Scheme of a simulated annealing technique.

Gauss-Jordan algorithm and gives the values of E in the
center rl, ”““,rN of each cell of the section. The scattered
field on the measurement line is then calculated by means
of a discretized version of the integral in (3) with points r
located on the line.

B. Simulated Annealing: Principles

The simulated annealing technique (SA) is an optimiza-
tion algorithm derived from the Metropolis algorithm [14]
and has been applied to the optimization of problems
where many parameters are involved (circuit design, im-
age reconstruction,... ). SA searches for the optimum
state of a system, which is defined as the global minimum
of a cost function Y of the system. Starting from an
arbitrary initial estimate, it introduces in each iteration a
slightly modified estimate, for which the cost is calcu-
lated. This new estimate is then accepted. or rejected.
Moving from one estimate to another, it tries to find the
global minimum of the cost function in a way similar to
the physical annealing process of an amorphous hot solid
of high energy cooling towards a monocrystal of minimum
energy. The temperature is lowered slowly enough to
reach thermodynamic equilibrium at each temperature. If
it were lowered abruptly, the solid would freeze into a
suboptimum state.

Fig. 2 illustrates the principle of SA. A modification of
the estimate introduces a variation AY = ~+ ~– ~ of
the cost function. For AJ%_negative the modified cost is
lower than the previous cost, so the new estimate ap-
proaches the optimum and is accepted. If AY is positive
the modified estimate will not necessarily be rejected as is
usually the case with conventional methods of local opti-
mization. Such a worse estimate will be accepted accord-
ing to a Boltzman probability distribution

p = exp( – AF/kT) (6)
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Fig. 3. The simulated annealing algorithm used for microwave tomog-
raphy reconstruction. n + and n respectively represent the total number
of iterations and the total number of accepted estimates. idi and iau are
respectively the number of better and worse accepted estimates during
the constant temperature interval of no iterations.

where k is a constant, usually set to one and T a parame-
ter called temperature. Random numbers between zero
and one are generated for this purpose. For large T, p
tends to one, so each worse estimate will be accepted. For
small T, p tends to zero and only better estimates will do.
The temperature is chosen high in the beginning and is
lowered at equilibrium. In this context equilibrium is
interpreted as the number of accepted worse estimates
being, on average, equal to the number of better esti-
mates. T equal to zero corresponds to a conventional
method of local optimization or quenching, which often
guides a system to a local minimum of the cost function.
The virtue of SA and thus of introducing the probability
(6) is that it gives the system a chance to escape from
local minima.

C. Simulated Annealing: Application to Microwaue
Permittivity Reconstruction

Application of SA to microwave permittivity recon-
struction requires the definition of a cost function, choice
of an initial estimate for the complex permittivity distribu-
tion and of a way of modifying estimates, the definition of
a temperature profile and of a criterion to stop the
algorithm. For each estimate the scattered field Es is
calculated at discrete points on the line (forward prob-
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(b)

Fig. 4. (a) Geometry of the simulated experiment: four views are
considered. The incident radiation is a plane wave propagating perpend-
icularly to the ‘measurement line. (b) The two initial estimates.

TABLE 1
VALUEXOFTHERELATIVEPERMITTIVITYAND CONDUCHVITY

AT2.45 GHz

2.45 GHz, 37° C c. u(flm)– 1

w;iter 73.49 0.89
muscle 47. 2.16
bone 8.5 0.14

lem) and compared to the corresponding measuredl or
simulated scattering data Em. We defined the cost func-
tion, which we want to minimize, as the Normalized Root
Mean Square Error (NRMSE) between the scattering
data and the calculated scattered field:

where summations are taken over the measurement points
and over the different views. It may be interesting to
include in (7) terms expressing a priori information
(smoothness, upper or lower bounds) or regularization
terms [151. We chose the initial estimate arbitrarily or
according to available a priori information. For each
iteration a grain AE* was randomly added to or sub-
tracted from the complex permittivity value of one cell.
This cell may be picked at random, as we did in some
preliminary examples [16], or sequentially which seems
safer in the case of a large number of cells and which we
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Fig. 5. Curves of the variation during the iterat]ve process ofi the annealing temperature (a), the cost function (b), the
NRMS Error between the true and estimated relative permittivity (c) and between the true and estimated conductivity
(d) for reconstructions with initial estimate (1). The solid lines correspond to SA and the dotted lines to quenching (T= O).
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Fig. 6. Same as Fig. 5 for reconstructions with initial estimate (2).
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chose for these examples. The value of the grain is chosen
according to the dynamical range expected for the recon-
struction i.e., small enough to satisfy the required preci-
sion and yet large enough to enhance the convergence
speed. In order to accelerate the convergence we changed
the temperature each time a fixed number of iterations
was completed instead of waiting for equilibrium. At the
end of a constant temperature interval, we decreased T if
the system was close to equilibrium. If it was still far from
equilibrium—i.e. the number of better estimates is signifi-
cantly greater than the number of accepted worse
ones—we raised T. In this way, annealing was maintained
during the process. We stopped the algorithm when the
ratio of the number of accepted estimates to the total
number of iterations in a constant T interval fell below
1%. The process remains stationa~ for low values of this
ratio, since the estimate is not significantly updated. Fig.
3 gives a schematic representation of SA applied to mi-
crowave tomography reconstruction.

The solution of the forward problem for each iteration
requires an N x N matrix inversion as described earlier.
This consumes excessive CPU time for large values of N.
We were able to develop a fast inversion routine since
only one cell, and so only one column in the matrix, is
modified at a time (see Appendix).

IV. NUMERICAL SIMULATIONS AND RESULTS

We will now present some results obtained with simu-
lated noise-free data for the reconstruction of a simplified
model of a human arm illuminated by a plane wave at
2.45 GHz. The arm is assumed to be infinitely long with a
muscle and bone composition invariant along its length
and immersed in water. Fig. 4(a) represents a cross-sec-
tion discretized into 25 cells. Dielectric permittivity and
conductivity at 2.45 GHz are listed in Table 1. We calcu-
lated for this model, by means of a discretized version of
the integral in (3), values of simulated measureme~$s Em
at 36 points. Nine points are situated on a hne L~
opposite to the source Et and the line and source are
rotated corresponding to four angles of incidence k =
1 “““4 each separated by 90°. In our reconstruction algo-
rithm the values Ern serve as a least squares reference
since we minimize the cost function (7). Some prior
knowledge of the solution was assumed to be available for
the choice of the initial estimate. We performed recon-
structions for two different initial estimates: 1) a homo-
geneous muscular estimate, and 2) a similar estimate
containing a single bone cell in the middle (Fig. 4(b)). In
both cases we have used SA, quenching (T= O) and a nu-
merical method based on a deterministic Newton–
Kantorovich technique [12]. Throughout the reconstruc-
tion process we forced the permittivity and conductivity
values to be positive.

Graphs comparing the convergence of SA (solid line)
and of quenching (dotted line) are presented in Figs. 5
and 6 for the respective cases of the initial estimate. They
show curves of the variation of the temperature (a); the
cost function (b); the NRMSE between estimated and
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Fig. 7. Representation of the complex .permittivity of the test object.
The width and height of each rectangle are proportional respectively to
e, and to u.

mmmmu m-n-m
BnBn B ;y :;:

‘m Bm B-n
Imnmm -~-~-
Mnnnm --~mm-

(a) (b)

-mm–m -mmm-

,fi-gm’ -B-R-
~l[~m m- Bm -
-B-mm ::B:m

-Ha–m
(c) (d)

Fig. 8. Reconstructions of the test object with (a) initial estimate (l),
obtained by the following methods: (b) SA, (c) quenching: (d) the
Newton–Kantorovich method.

true values of the permittivity (c); and of the conductivity
(d). The temperature, which we adapted every 25 scans of
the object, rapidly decreases in the beginning of the
process and then oscillates. Comparison of this annealing
temperature scheme to schemes where T was slowly
decreased revealed a faster convergence for the former.
Curves (b – d) show that SA leads to a more accurate
solution than quenching. this phenomenon is more pro-
nounced in the first case where less a priori informs tion
is available ((Fig. 5). In the second case SA converges

faster than quenching (Fig. 6). We also observe that the
conductivity is never reconstructed as well as the relative
permittivity. This is due to the relatively small values of
U/ 0~0 with respect to ~,. Nevertheless the algorithm
manages to reconstruct the water and bone which have
quite different dielectric properties to muscle.

A different way of presenting our reconstruction results
are the complex permittivity distribution images. ‘The
value of the complex permittivity of each cell is repres-
ented by a rectangle whose width and height are propor-
tional respectively to the dielectric permittivity and to the
conductivity. Fig. 7 illustrates this representation for the
model of the arm section. Figs. 8 and 9 give, for the
respective reconstruction cases, the initial estimate (a);
and results obtained with SA (b); with quenching (c); and
with the Newton-Kantorovich method (d). We notice that
SA seems to converge to a global minimum solution since
the final results do not depend on the initial estimate.
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Fig. 10. Sequential application of SA and the Newton–Kantorovich
method: (a) initial estimate for Sk, (b) result after 25 000 iterations of
SA and initial estimate for the Newton–Kantorovich method: (c) final
result after eight iterations of the Newton–Kantorovich method.

Furthermore we conclude that SA can achieve satisfac-
tory reconstructions in cases where deterministic methods
fail to converge (Fig. 8(c)–(d)), i.e., when little prior
knowledge is available or when the number of data is low.
However, when the Newton-Kantorovich method con-
verges, it does so in a much more efficient way with
respect to the required computer time. By way of illustra-
tion 100000 iterations of SA required a CPU time of one
and a half hours on an IBM 9375 for our 5 x 5 cell object.
We found that the time per iteration is proportional to
NM+ N= where N and M are respectively the number of
cells and the number of measurements. The algorithm’s
behavior for larger objects is subject to further study but
it seems clear that more iterations will be needed for
convergence.

Finally we applied sequentially SA and the Newton–
Kantorovich method to the case where the latter alone
failed to converge. Fig. 10 shows an example where SA
started from the homogeneous muscular estimate (a) and
was stopped after 25 000 iterations. The corresponding
result (b) served as an initial estimate for the Newton–
Kantorovich method which reached the final result (c)
after only eight iterations. We conclude that the sug-
gested combination of methods still consumes consider-
able amounts of CPU time, although less than SA alone,
but does exhibit convergence to an accurate solution
when deterministic methods alone fail.

V. CONCLUSION

We have presented a preliminary study of the applica-
tion of simulated annealing (SA) to complex permittivity
reconstruction in microwave tomography. Reconstruc-

tions of a simplified model of a human arm obtained with
simulated noise-free data have been presented for three
different methods: SA, quenching and a Newton–
Kantorovich method. These results are interesting since
they show that SA can converge to an accurate solution in
cases where the two deterministic methods fail. For this
reason SA can be used to get closer to the final solution
before applying a faster deterministic method. We admit
that an infinite cylinder of arbitraw cross-sectional shape
whose internal structure does not vary along its length is
not an ideal approximation of the human arm, but we
prefer first to explore the possibilities of two dimensional
algorithms before examining the much more difficult three
dimensional problem.

Much work still has to be done to fully evaluate the
performances of SA for this type of application: we need
to test the stability of the algorithm in the presence of
noisy data, to introduce other cost functions to regularize
the process and to try to accelerate the direct problem
since the main disadvantage of
amount of CPU time required.

APPENDIX

We derive here a fast inversion
written as

H= H(, +

SA still remains the

for a square matrix H

o . . . h, ... 0

\ o . . . h~ ... 0

(Al)

‘1

column 1

where we assume that Hi 1 is already calculated. With
the following notations,

ii

hl and ~el=((). ..o), .o),

h= ;
‘r

h; column 1

(Al) also can be written as

H= HO+h[el. (A2)

Multiplication by H-1 to the left and by H; 1 to the right
gives

H-1~~~1 = ~Y-l + ~-lh ‘elH~l, (A3)

which leads to

H-’= H~l-(H-lh)’elH~l, (A4)

or

H-’h =H~’h –(H-’h) ‘ellf~’h, (A5)

after multiplication by h, The scalar ‘elH; 1h, which we
note (H; lh)l, is the lth element of the column vector
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H; l/z. From (M) we deduce

1
H-lb =

l+(H~lh)l
H; lh , (A6)

and from (A6) and (A4):

The expression (H: lh) ‘elH~ lh represents a matrix with
line i obtained by multiplying line 1 of Hi 1 by element i
of H; lh.
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